Synthesis of Spiro Polycyclic Aromatic Hydrocarbons by Intramolecular Palladium-Catalyzed Arylation

J uan J . González, Nuria García, Berta Gómez-Lor, and Antonio M. Echavarren*
Departamento deQuímica Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28006 Madrid, Spain

Received November 4, 1996^{*}

Abstract

The palladium-catalyzed intramolecular arylation reaction has been applied to the synthesis of the spiro polycyclic aromatic hydrocarbons and planar polycyclic aromatic hydrocarbons by formation of a six-membered ring. The reaction proceeds more readily with aryl bromides substituted with electron-withdrawing groups by using palladium acetate in N, N-dimethylformamide as the solvent. For the less reactive p-methoxyaryl derivatives the use of Lil as an additive was shown to give the best results. The results obtained in the cyclization of nitro derivatives $\mathbf{2 1}$ and $\mathbf{2 3}$ suggest that the second step of the cyclization reaction is not an electrophilic substitution reaction.

Introduction

The palladium-catalyzed intramolecular arylation reaction offers one of the conceptually most simple solutions for the synthesis of carbo- and heterocycles from the corresponding halides ($\mathrm{X}=\mathrm{Br}, \mathrm{I}$) (Scheme 1). ${ }^{1,2}$ The utility of this process has been recently extended by Rice using aryl triflates as the substrates for the formation of a five-membered ring in the synthesis of carbocycles $(\mathrm{X}=\mathrm{OTf}))^{3,4}$ The reaction has usually been carried out with $\mathrm{Pd}(\mathrm{OAc})_{2}$ or $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ as the catalyst in polar solvents (DMF or DMA) at relatively high temperatures ($120-170^{\circ} \mathrm{C}$) in the presence of a base to trap HX. However, despite the synthetic potential of this reaction, very little is known about its mechanism. A simplified mechanistic hypothesis for the arylation reaction is outlined in Scheme 1 (ligands L on Pd are removed for clarity). The initially formed aryl palladium(II) complex $\left[\operatorname{PdAr}(\mathrm{L})_{n} \mathrm{X}\right] \mathbf{I}(\mathrm{L}=$ phosphine or solvent molecule, $\mathrm{n}=1$ or 2) ${ }^{5}$ may react with the aryl ring as an electrophile to form II, ${ }^{1 a, 6,7}$ fol lowed by a proton loss to form [PdArAr'$(\mathrm{L})_{\mathrm{s}}$ IIII. Finally, reductive elimination of III would give rise to the biaryl product and the reactive $\mathrm{Pd}(0)$ species. However, the fact that the reaction tol erates both strongly electron-withdrawing and electron-releasing groups is

[^0]Scheme 1

difficult to reconcile with this working mechanistic hypothesis. ${ }^{11,8}$
We wished to demonstrate the formation of sixmembered rings by using the palladium-catalyzed arylation reaction as a prelude to the synthesis of more complex polycyclic aromatic hydrocarbons related to the

[^1]
Scheme 2

1: $\mathrm{X}=\mathrm{H}$
2: $\mathrm{X}=\mathrm{OMe}$
3 : $\mathrm{X}=\mathrm{NO}_{2}$
4: $\mathrm{X}=\mathrm{F}$

5: $X=Y=H$
6: $\mathrm{X}=\mathrm{Y}=\mathrm{OMe}$
7 : $X=H, Y=O M e$
8: $X=H, Y=\mathrm{NO}_{2}$ 9: $\mathrm{X}=\mathrm{OMe}, \mathrm{Y}=\mathrm{NO}_{2}$

10 : $\mathrm{X}=\mathrm{H}$
$11: X=\mathrm{OMe}$
$12: \mathrm{X}=\mathrm{NO}_{2}$
$13: X=F$
thrylenes (benzo[b]fluoranthenes) proceeds in just two steps from readily available materials and could be easily applied for the preparation of substituted derivatives. ${ }^{12}$ It should be stressed that in all cases, and in contrast with alternative procedures, ${ }^{12 a-c}$ a single regioisomer was obtained in the cyclization.

Dibenzylated fluorene 5 gave spiro derivative 14 in 68% yield under the standard conditions $\left(130^{\circ} \mathrm{C}, 24 \mathrm{~h}\right)$ (Scheme 2). The reaction of dimethoxy derivative 6 under these conditions failed to give spiro 15. Instead, reduced fluorene $\mathbf{1 6}$ was isolated as the only product in 35% yield. ${ }^{13}$ The use of Lil as the additive (DMF, 135 ${ }^{\circ} \mathrm{C}, 5 \mathrm{~d}$) allowed for the formation of 15, albeit in only 30% yield. However, no cyclization was observed in the presence of LiBr or LiCl as the additives. Reaction of unsymmetrically substituted 7 under these conditions gave 17 as the only product (62% yield). On the other hand, the cyclization of 8 furnished 18 (53% yield) under the standard conditions at $95{ }^{\circ} \mathrm{C}$. Interestingly, by performing the reaction at $70^{\circ} \mathrm{C}$ for 48 h in the presence of only 0.5 equiv of $\mathrm{BnMe}_{3} \mathrm{NBr}$, dihydrobenz[e]acephenanthrylene 19 was obtained as the only product (isolated in 47\% yield). Under these conditions, methoxy nitro derivative $\mathbf{9}$ yielded 20 (67% yield). The selective cyclization of the p-nitroaryl bromides of 8 and 9 is consistent with the more facile oxidative addition of aryl halides substituted with electron-withdrawing groups. ${ }^{\text {1a,14 }}$ Additionally, the faster cyclization of substrates bearing a p-nitro substituent suggests that the oxidative addition is the rate-determining step of the palladium-catalyzed arylation.

16

$19: X=H$ $20: X=O M e$

Alternatively, the selective cyclization of p-nitroaryl substrates may be due to the higher electrophilicity of the derived palladium(II) complexes I toward the second aryl ring (Scheme 1). In order to determine if the second step of the reaction is an electrophilic substitution process, we prepared two substrates bearing a nitro group ortho to the position attacked by the palladium(II). Thus, benzylation of 2-nitrofluorene afforded 21 (75% yield), which was cyclized at $70^{\circ} \mathrm{C}$ in DMF under the standard conditions but with only 0.5 equiv of $\mathrm{BnMe}_{3} \mathrm{NBr}$ to give 22 in 53\% yield (eq 1). On the other hand, reaction of

[^2]

21
22

[Pd]

In contrast with the successful cyclizations of the above substrates, acenaphthene derivative 28, prepared by Wittig olefination of acenaphthenequinone ${ }^{20}$ followed by catalytic hydrogenation, led only to traces of cyclized product 30 (Scheme 3). The crude reaction mixtures showed that $\mathbf{2 8}$ suffered dehydrogenation and reductive elimination of the bromide as the major decomposition pathways. Interestingly, the reaction of its methyl enol ether 29 with $\mathrm{Pd}(\mathrm{OAc})_{2}$ proceeded with concomitant demethylation and oxidation to give known 4H-cyclopen-ta[def]chrysen-4-one (30). ${ }^{21}$ The oxidation observed in this process is reminiscent of that observed in the oxidation of silyl enol ethers by $\mathrm{Pd}(\mathrm{OAc})_{2}$ to give enones. ${ }^{22}$

This work demonstrates that the palladium-catalyzed intramolecular reaction can be applied for the formation of six-membered ring carbocycles. The reaction proceeds more readily with aryl bromides substituted with electronwithdrawing groups. For the less reactive p-methoxyaryl derivatives the use of Lil as an additive was shown to give the best results. The rate enhancement observed in the presence of Lil is a likely manifestation of the known iodide catalysis effect on the oxidative addition step. The ready construction of spiro derivatives 1418, 22, and 27 should allow for the synthesis of chiral trans-chelating ligands based on these chiral hexacydic scaffolds. Progress on the application of this reaction for the synthesis of more complex substrates is underway.

Experimental Section

Solvents were purified and dried using standard procedures. "Usual workup" means extraction with the stated solvent, washing with 10% aqueous HCl , drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right.$ or $\left.\mathrm{MgSO}_{4}\right)$, filtration, and evaporation. Chromatography purifications were carried out using flash grade silica gel. All reactions were carried out under an Ar atmosphere.

The following compounds were prepared according to the published procedures: 1-bromo-2-(bromomethyl)-4-methoxybenzene, ${ }^{23} 1$-bromo-2-(bromomethyl)-4-nitrobenzene, ${ }^{24} 9$-meth-yl-2-nitrofluorene, ${ }^{15}$ and 1-bromo-2-(bromomethyl)-4-fluorobenzene. ${ }^{25}$

General Procedures for the Synthesis of 1-8, 21, and 23: Method A. Fluorene was deprotonated with BuLi (1 equiv) in THF ($-78{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$) followed by addition of a solution of the corresponding o-bromobenzyl bromide (0.8 equiv) in THF. Usual workup and chromatographic purification (EtOAchexane mixtures) led to pure compounds. Method B. Deprotonation of $\mathbf{1}$ with a suspension of $\mathrm{NaH}(60 \%$) (1 equiv) in DMF $(2 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$ was followed by addition of a solution of the

[^3]
Scheme 3

corresponding o-bromobenzyl bromide (1 equiv) in DMF. (See the Supporting Information for details and characterization data).

9-[(2-Bromo-5-methoxyphenyl)methyl]-9-[(2-bromo-5nitrophenyl)methyl]fluorene (9). Benzylation of 2 according to method B gave 9 as a pale yellow solid (63\%): mp $\left(\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}\right) 168-170^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.61$ (dd, J $=8.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}$, $\mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{dd}, \mathrm{J}=8.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, \mathrm{~J}=$ $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCI $3,50 \mathrm{MHz}$; DEPT) $\delta 157.73$ (1C, s, Ar), 147.01 (2C, s, Ar), 145.88 ($1 \mathrm{C}, \mathrm{s}, \mathrm{Ar}$), 140.74 (2C, s, Ar), 138.61 (1C, s, Ar), 137.19 (1C, s, Ar), 133.07 (1C, d, ArH), 132.90 (1C, d, ArH), 127.94 (2C, d, ArH), 126.98 (2C, d, ArH), 124.74 (1C, d, ArH), 124.68 (2C, d, ArH), 122.08 (1C, d, ArH), 119.93 (2C, d, ArH), 116.15 (1C, s, Ar), 115.30 (1C, d, ArH), 114.68 (1C, d, ArH), 56.18 (1C, s, $\left.\mathrm{Ar}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2}\right), 54.80\left(1 \mathrm{C}, \mathrm{q}, \mathrm{CH}_{3} \mathrm{O}\right), 43.36(2 \mathrm{C}, \mathrm{t}$, $\mathrm{ArCH}_{2} \mathrm{C}$) (one carbon signal overlaps); EI-MS m/ z 579, 577 ($\mathrm{M}^{+}, 29,16$), 380, 378 (100), 252 (100). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{Br}_{2} \mathrm{NO}_{3}: \mathrm{C}, 58.06 ; \mathrm{H}, 3.65 ; \mathrm{N}, 2.42$. Found: $\mathrm{C}, 57.68$; H, 3.55; N, 2.56.

Benz[e]acephenanthrylene (10). ${ }^{3 \mathrm{~b}}$ A suspension of 1 $(200 \mathrm{mg}, 0.60 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(662 \mathrm{mg}, 4.80 \mathrm{mmol}), \mathrm{Bu} \mathrm{A}_{4} \mathrm{NBr}(560$ $\mathrm{mg}, 1.8 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{OAc})_{2}(7 \mathrm{mg}, 5 \mathrm{~mol} \%, 0.03 \mathrm{mmol})$ in DMF (8 mL) was heated at $130^{\circ} \mathrm{C}$ for 48 h . After the usual workup ($\mathrm{Et}_{2} \mathrm{O}$), the residue was chromatographed (hexane) to give $\mathbf{1 0}$ as a white solid ($80 \mathrm{mg}, 52 \%$): ${ }^{66} \mathrm{mp} 162-164{ }^{\circ} \mathrm{C}$ (lit. $\left.\mathrm{mp}^{4 \mathrm{~b}} 168{ }^{\circ} \mathrm{C}\right)$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 8.67(\mathrm{dd}, \mathrm{J}=$ $7.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H})$, 8.10-7.90 (m, 4H), 7.80-7.60 (m, 3H), 7.46-7.41 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 50 \mathrm{MHz}$; DEPT) $\delta 140.63$ (1C, s, Ar), 138.49 (1C, s, Ar), 136.91 (1C, s, Ar), 135.00 (1C, s, Ar), 133.96 (1C, s, Ar), 132.00 (1C, s, Ar), 130.65 (1C, s, Ar), 130.14 (1C, d, ArH), 129.24 (1C, s, Ar), 128.10 (1C, d, ArH), 128.01 (1C, d, ArH), 127.37 (1C, d, ArH), 126.94 (1C, d, ArH), 126.69 (1C, d, ArH), 123.08 ($1 \mathrm{C}, \mathrm{d}, \mathrm{ArH}$), 121.87 (1C, d, ArH), 121.57 (1C, d, ArH), 121.45 (1C, d, ArH), 121.31 (1C, d, ArH), 119.48 (1C, d, ArH).

10-Methoxybenz[e]acephenanthrylene (11). ${ }^{12 f}$ A suspension of $\mathbf{2}(300 \mathrm{mg}, 0.82 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(19 \mathrm{mg}, 10 \mathrm{~mol} \%$, 0.08 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(227 \mathrm{mg}, 1.6 \mathrm{mmol}$), and Lil ($281 \mathrm{mg}, 2.05$ mmol) in DMF (5 mL) was stirred at $130^{\circ} \mathrm{C}$ for 4 d . After the usual workup ($\mathrm{Et}_{2} \mathrm{O}$) the residue was suspended in hexane and filtered to give $\mathbf{1 1}$ as a white solid ($116 \mathrm{mg}, 50 \%$): :27 mp 194$196{ }^{\circ} \mathrm{C}$ (lit. $.^{12 f} \mathrm{mp} 198-199{ }^{\circ} \mathrm{C}$); ${ }^{1 \mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta$ $8.55(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H})$, $8.01-7.89(\mathrm{~m}, 3 \mathrm{H}), 7.74(\mathrm{dd}, \mathrm{J}=8.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.36$ $(\mathrm{m}, 4 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H})$.

10-Nitrobenz[e]acephenanthrylene (12). A suspension of $3(160 \mathrm{mg}, 0.42 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(13 \mathrm{mg}, 11 \mathrm{~mol} \%, 0.06$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(440 \mathrm{mg}, 3.2 \mathrm{mmol})$, and $\mathrm{Bu}_{4} \mathrm{NBr}(270 \mathrm{mg}, 0.84$ mmol) in DMF (10 mL) was stirred at $70^{\circ} \mathrm{C}$ for 48 h . After

[^4]the usual workup ($\mathrm{Et}_{2} \mathrm{O}$), the residue was chromatographed ($10: 1$ hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give 12 as a yellow solid (70 mg , 57\%): mp 192-194 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 8.90$ (d, $\mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.74(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.44(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 8.10-7.90(\mathrm{~m}, 3 \mathrm{H})$, $7.83(\mathrm{dd}, \mathrm{J}=8.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.42(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, 50^{\circ} \mathrm{C}\right.$; DEPT) $\delta 146.05$ (1C, s, Ar), 140.53 (1C, s, Ar), 137.64 (1C, s, Ar), 137.41 (1C, s, Ar), 137.24 (1C, $\mathrm{s}, \mathrm{Ar}), 134.32$ (1C, s, Ar), 133.44 (1C, s, Ar), 133.37 (1C, s, Ar), 129.04 (1C, d, ArH), 128.96 (1C, d, ArH), 127.88 (1C, d, ArH), 126.47 (1C, s, Ar), 125.37 (1C, d, ArH), 124.05 (1C, d, ArH), 122.25 (1C, d, ArH), 122.10 (1C, d, ArH), 121.47 (1C, d, ArH), 121.08 (1C, d, ArH), 120.78 (1C, d, ArH), 120.38 (1C, d, ArH); EI-MS m/z 297 (${ }^{+}, 100$). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{11^{-}}$ $\mathrm{NO}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 78.42 ; \mathrm{H}, 3.95 ; \mathrm{N}, 4.57$. Found: C, $78.42 ; \mathrm{H}$, 3.71; $\mathrm{N}, 4.57$. (The presence of water was confirmed by ${ }^{1} \mathrm{H}$ NMR.)

10-F luorobenz[e]acephenanthrylene (13). A suspension of $4(240 \mathrm{mg}, 0.68 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(281 \mathrm{mg}, 2 \mathrm{mmol}), \mathrm{BnMe} \mathrm{e}^{-}$ $\mathrm{NBr}(81 \mathrm{mg}, 0.35 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{OAc})_{2}(16 \mathrm{mg}, 0.07 \mathrm{mmol})$ in DMF (5 mL) was stirred at $120^{\circ} \mathrm{C}$ for 48 h . After the usual workup ($\mathrm{Et}_{2} \mathrm{O}$), the residue was chromatographed (100:1 hexane-EtOAc) to give 13 as a white solid ($120 \mathrm{mg}, 65 \%$): mp $138-140^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.59$ (dd, J $=9.0$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}$), $8.35(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 8.03-7.90$ ($\mathrm{m}, 3 \mathrm{H}$), 7.74 (dd, J $=8.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.65 (dd, J $=9.8,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$; DEPT) $\delta 161.28$ [1C, d, ${ }^{1}$ J $\left.\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=245.6 \mathrm{~Hz}, \mathrm{Ar}\right], 140.72$ (1C, Ar), 138.13 (1C, Ar), 136.98 (1C, Ar), 136.14 (1C, Ar), 135.34 [1C, d, $\left.{ }^{3} \mathrm{~J}\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=8.7 \mathrm{~Hz}, \mathrm{Ar}\right], 131.54$ (1C, Ar), 128.43 (1C, ArH), 128.34 (1C, ArH), 127.45 (1C, ArH), 127.13 (1C, Ar), 127.07 (1C, Ar), $124.93\left[1 \mathrm{C}, \mathrm{d},{ }^{3} \mathrm{~J}\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=8.8 \mathrm{~Hz}, \mathrm{ArH}\right], 121.99$ (1C, ArH), 121.32 (1C, ArH), 121.29 (1C, ArH), 120.32 [1C, d, ${ }^{4} \mathrm{~J}\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=3.0 \mathrm{~Hz}, \mathrm{ArH}$], 119.22 (1C, ArH), 115.50 [1C, d, $\left.{ }^{2} \mathrm{~J}\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=23.6 \mathrm{~Hz}, \mathrm{ArH}\right], 114.21\left[1 \mathrm{C}, \mathrm{d},{ }^{2} \mathrm{~J}\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=20.8\right.$ Hz, ArH]; EI-MS m/z 270 (M+, 100). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{11} \mathrm{~F}: \mathrm{C}, 88.87$; $\mathrm{H}, 4.10$. Found: C, 88.72; $\mathrm{H}, 4.22$.
$\mathbf{1 H}, \mathbf{1 6 H}$-Phenanthro[1,10,10-a ef]acephenanthrylene (14). A suspension of $5(300 \mathrm{mg}, 0.60 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.60 \mathrm{~g}$, $4.3 \mathrm{mmol}), \mathrm{Bu}_{4} \mathrm{NBr}(360 \mathrm{mg}, 1.1 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{OAc})_{2}(17 \mathrm{mg}$, $6 \mathrm{~mol} \%, 0.08 \mathrm{mmol})$ in DMF (10 mL) was stirred at $130^{\circ} \mathrm{C}$ for 24 h . After the usual workup ($\mathrm{Et}_{2} \mathrm{O}$), the residue was triturated with hexane and filtered to give 14 as a white sol id ($140 \mathrm{mg}, 68 \%$): mp (hexane) $219-220^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $300 \mathrm{MHz}) \delta 7.89(\mathrm{dd}, \mathrm{J}=7.6,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{dd}, \mathrm{J}=7.4$, $1.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.59 (dd, J $=7.6,1.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.52 ($\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, 2 H), 7.40 (br t, J $=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.29 (td, J $=7.4,1.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.17 (br d, J $=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.21(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~d}$, $\mathrm{J}=14.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$; DEPT) $\delta 147.97$ (2C, s, Ar), 140.20 (2C, s, Ar), 137.08 (2C, s, Ar), 135.13 (2C, s, Ar), 134.39 (2C, s, Ar), 130.09 (2C, d, ArH), 128.94 (2C, d, ArH), 128.34 ($2 \mathrm{C}, \mathrm{d}$, ArH), 127.54 ($2 \mathrm{C}, \mathrm{d}, \mathrm{ArH}$), 123.57 ($2 \mathrm{C}, \mathrm{d}$, ArH), 122.01 (2C, d, ArH), 119.39 (2C, d, ArH), 45.23 (1C, s, $\left.\mathrm{Ar}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2}\right)$, $34.84\left(2 \mathrm{C}, \mathrm{t}, \mathrm{ArCH}_{2} \mathrm{C}\right)$; EI-MS m/ z $342\left(\mathrm{M}^{+}, 100\right)$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{18}: \mathrm{C}, 94.70 ; \mathrm{H}, 5.30$. Found: $\mathrm{C}, 95.03$; H, 5.00.

3,14-Dimethoxy-1H,16H-phenanthro[1,10,10-aef]acephenanthrylene (15). A suspension of 6 ($200 \mathrm{mg}, 0.35 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(8 \mathrm{mg}, 10 \mathrm{~mol} \%, 0.035 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(100 \mathrm{mg}, 0.7$ mmol), and Lil ($120 \mathrm{mg}, 0.9 \mathrm{mmol}$) in DMF (5 mL) was stirred at $135{ }^{\circ} \mathrm{C}$ for 5 d . After the usual workup ($\mathrm{Et}_{2} \mathrm{O}$), the residue was suspended in $\mathrm{Et}_{2} \mathrm{O}$ to give 15 as a yellow solid (42 mg , 30\%): mp 238-240 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.78$ (d, $\mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 4 \mathrm{H}), 6.91$ (dd, J $=8.7,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}$, $6 \mathrm{H}), 3.07(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl $3,50 \mathrm{MHz}$; DEPT) $\delta 159.79$ (2C, s, Ar), 147.13 (2C, s, Ar), 140.17 (2C, s, Ar), 138.85 (2C, s, Ar), 134.27 (2C, s, Ar), 128.84 (2C, d, ArH), 127.99 (2C, s, Ar), 124.51 (2C, d, ArH), 121.35 (2C, d, ArH), 118.50 (2C, d, ArH), 116.13 (2C, d, ArH), 112.17 (2C, d, ArH), 55.38 ($2 \mathrm{C}, \mathrm{q}, \mathrm{CH}_{3} \mathrm{O}$), 45.26 (1C, s, $\left.\mathrm{Ar}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2}\right), 35.24\left(2 \mathrm{C}, \mathrm{t}, \mathrm{ArCH}_{2} \mathrm{C}\right)$; $\mathrm{El}-\mathrm{MS} \mathrm{m} / \mathrm{z} 402$ (M+, 100). Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{O}_{2}$: $\mathrm{C}, 86.54 ; \mathrm{H}, 5.51$. Found: $\mathrm{C}, 86.38$; H, 5.55.

9,9-Bis[(3-methoxyphenyl)methyl]fluorene (16). A soIution of $6(30 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.4 \mathrm{mg}, 10 \mathrm{~mol} \%$,
0.01 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($56 \mathrm{mg}, 0.4 \mathrm{mmol}$), and $\mathrm{Bu}_{4} \mathrm{NBr}(25 \mathrm{mg}$, 0.08 mmol) in DMF (5 mL) was stirred at $120^{\circ} \mathrm{C}$ for 36 h . After the usual workup ($\mathrm{Et}_{2} \mathrm{O}$), the residue was suspended in EtOAc and filtered to give 16 as a white solid ($7 \mathrm{mg}, 35 \%$): mp 122-125 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$) $\delta 7.45-7.40(\mathrm{~m}$, $4 \mathrm{H}), 7.31-7.16(\mathrm{~m}, 4 \mathrm{H}), 6.83(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{dd}, \mathrm{J}=$ $7.1,2.4 \mathrm{~Hz}, 2 \mathrm{H}$), $6.30(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.13(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}$, 2 H), $3.44(\mathrm{~s}, 6 \mathrm{H}), 3.35(\mathrm{~s}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 50 \mathrm{MHz}$; DEPT) $\delta 158.34$ (2C, s, Ar), 148.19 (2C, s, Ar), 140.97 (2C, s, Ar), 138.49 (2C, s, Ar), 127.88 (2C, d, ArH), 126.98 (2C, d, ArH), 126.19 (2C, d, ArH), 124.50 (2C, d, ArH), 122.81 (2C, d, ArH), 119.76 (2C, d, ArH), 114.91 (2C, d, ArH), 112.25 (2C, d, ArH), 56.58 (1C, s, $\left.\mathrm{Ar}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2}\right), 54.77$ (2C, q, CH ${ }_{3} \mathrm{O}$), 43.52 ($2 \mathrm{C}, \mathrm{t}$, $\mathrm{ArCH}_{2} \mathrm{C}$); $\mathrm{El}-\mathrm{MS} \mathrm{m} / \mathrm{z} 406$ (M+, 29$), 285$ (100). Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{2}: \mathrm{C}, 85.68 ; \mathrm{H}, 6.45$. Found: C, 85.30; $\mathrm{H}, 6.64$.

3-Methoxy-1H,16H-phenanthro[1,10,10-aef]acephenanthrylene (17). A suspension of $7(300 \mathrm{mg}, 0.56 \mathrm{mmol})$, Pd$(\mathrm{OAC})_{2}(14 \mathrm{mg}, 10 \mathrm{~mol} \%, 0.06 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(250 \mathrm{mg}, 1.8$ mmol), and Lil ($206 \mathrm{mg}, 1.5 \mathrm{mmol}$) in DMF (10 mL) was stirred at $130^{\circ} \mathrm{C}$ for 4 d . After the usual workup ($\mathrm{Et}_{2} \mathrm{O}$), the residue was suspended in $\mathrm{Et}_{2} \mathrm{O}$ and filtered to give 17 as a white solid ($130 \mathrm{mg}, 62 \%$): $\mathrm{mp} 216-219{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 7.89$ (dd, J $=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ (dd, J $=7.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.68 (dd, J $=6.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.59-$ $7.49(\mathrm{~m}, 4 \mathrm{H}), 7.40(\mathrm{brt}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{td}, \mathrm{J}=7.5,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.19$ (br d, J $=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ (dd, J $=8.4,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.74(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{AB}$ system, part A, J $=14.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.08 (AB system, part A, J = 14.6 $\mathrm{Hz}, 1 \mathrm{H}), 2.41$ (AB system, part $\mathrm{B}, \mathrm{J}=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{AB}$ system, part $\mathrm{B}, \mathrm{J}=14.4 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right.$; DEPT) $\delta 159.74$ (1C, s, Ar), 147.77 (1C, s, Ar), 147.19 ($1 \mathrm{C}, \mathrm{s}$, Ar), 140.22 ($1 \mathrm{C}, \mathrm{s}, \mathrm{Ar}$), 140.01 (1C, s, Ar), 138.80 (1C, s, Ar), 137.01 (1C, s, Ar), 135.06 (1C, s, Ar), 134.27 (1C s, Ar), 130.10 (1C, d, ArH), 128,84 (2C, d, ArH), 128.26 (1C, d, ArH), 127.89 (1C, s, Ar), 127.41 (1C, d, ArH), 124.51 (1C, d, ArH), 123.46 (1C, d, ArH), 121.82 (1C, d, ArH), 121.35 (1C, d, ArH), 119.29 (1C, d, ArH), 118.50 (1C, d, ArH), 116.07 (1C, d, ArH), 112.01 (1C, d, ArH), 55.32 (1C, q, $\mathrm{CH}_{3} \mathrm{O}$), 45.20 (1C, s, $\mathrm{Ar}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2}$), 35.13 ($1 \mathrm{C}, \mathrm{t}, \mathrm{ArCH}_{2} \mathrm{C}$), 34.81 ($1 \mathrm{C}, \mathrm{t}, \mathrm{ArCH}_{2} \mathrm{C}$) (one carbon signal overlaps); EI-MS m/ z 372 (M+, 100). ${ }^{28}$

3-Nitro-1H,16H-phenanthro[1,10,10-aef]acephenanthrylene (18). A suspension of $8(320 \mathrm{mg}, 0.58 \mathrm{mmol}), \mathrm{K}_{2}-$ $\mathrm{CO}_{3}(600 \mathrm{mg}, 4.3 \mathrm{mmol}), \mathrm{Bu}_{4} \mathrm{NBr}(360 \mathrm{mg}, 1.1 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{OAc})_{2}(17 \mathrm{mg}, 12 \mathrm{~mol} \%, 0.08 \mathrm{mmol})$ in DMF (10 mL) was stirred at $95{ }^{\circ} \mathrm{C}$ for 48 h . After the usual workup ($\mathrm{Et}_{2} \mathrm{O}$), the residue was chromatographed ($3: 1$ hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give 18 as a white solid ($120 \mathrm{mg}, 53 \%$): $\mathrm{mp}\left(\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}\right) 221-225$ ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 8.23(\mathrm{dd}, \mathrm{J}=8.1,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.85$ (dd, J $=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.75 (dd, J $=7.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.68 (dd, J = 7.0, 1.1 Hz, 1H), 7.60-7.48 (m, 4H), 7.39 (td, J = 7.5, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ (td, J $=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{br} \mathrm{d}, \mathrm{J}=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.38(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 50 \mathrm{MHz}$; DEPT) $\delta 148.42$ (1C, s, Ar), 147.40 (1C, s, Ar), 147.00 (1C, s, Ar), 141.48 (1C, s, Ar), 140.58 (1C, s, Ar), 139.56 (1C, s, Ar), 138.54 (1C, s, Ar), 136.06 (1C, s, Ar), 134.71 (1C, s, Ar), 134.37 (1C, s, Ar), 132.11 (1C, s, Ar), 129.97 (1C, d, ArH), 129.29 (1C, d, ArH), 129.21 ($1 \mathrm{C}, \mathrm{d}, \mathrm{ArH}$), 128.62 (1C, d, ArH), 127.77 (1C, d, ArH), 124.72 ($1 \mathrm{C}, \mathrm{d}, \mathrm{ArH}$), 123.93 ($1 \mathrm{C}, \mathrm{d}, \mathrm{ArH}$), 123.60 ($1 \mathrm{C}, \mathrm{d}$, ArH), 123.09 ($1 \mathrm{C}, \mathrm{d}, \mathrm{ArH}$), 122.52 (1C, d, ArH), 122.35 (1C, d, ArH), 121.11 ($1 \mathrm{C}, \mathrm{d}, \mathrm{ArH}$), 119.42 (1C, d, ArH), 44.73 (1C, s, $\left.\mathrm{Ar}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2}\right), 34.86$ ($1 \mathrm{C}, \mathrm{t}, \mathrm{ArCH}_{2} \mathrm{C}$), 34.69 ($1 \mathrm{C}, \mathrm{t}, \mathrm{ArCH}_{2} \mathrm{C}$); EIMS m/ z $387\left(\mathrm{M}^{+}, 100\right)$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{NO}_{2}$: $\mathrm{C}, 83.70$; H, 4.42; N, 3.62. Found: C, 83.25; H, 4.30; N, 3.56. ${ }^{28}$

7b,8-Dihydro-8a-[(2-bromophenyl)methyl]-10-nitrobenz[e]acephenanthrylene (19). A suspension of $8(400 \mathrm{mg}, 0.73$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(12 \mathrm{mg}, 7 \mathrm{~mol} \%, 0.05 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(806$ $\mathrm{mg}, 5.8 \mathrm{mmol}$), and $\mathrm{BnMe} \mathrm{e}_{3} \mathrm{NBr}(84 \mathrm{mg}, 0.37 \mathrm{mmol})$ in DMF (15 mL) was stirred at $70^{\circ} \mathrm{C}$ for 48 h . After the usual workup ($\mathrm{Et}_{2} \mathrm{O}$), the residue was chromatographed ($5: 1$ hexane $-\mathrm{CH}_{2-}$ Cl_{2}) to give 19 ($140 \mathrm{mg}, 41 \%$) as a yellow solid: $\mathrm{mp}\left(\mathrm{CHCl}_{3}-\right.$ $\left.\mathrm{Et}_{2} \mathrm{O}\right) 184-185{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 8.32(\mathrm{~d}, \mathrm{~J}=$
$2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.21 (dd, J $=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.94(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}$, 1H), 7.63-7.26 (m, 7H), 7.19-7.14 (m, 1H), 6.87-6.78 (m, 2H), $6.35-6.30(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~d}, \mathrm{~J}=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, \mathrm{~J}=12.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.05 (d, J $=12.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.02(\mathrm{~d}, \mathrm{~J}=15.1 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (CDCI, 50 MHz ; DEPT) $\delta 149.56$ (1C, s, Ar), 147.50 (1C, s, Ar), 147.08 (1C, s, Ar), 140.97 (1C, s, Ar), 140.75 (1C, s, Ar), 139.70 ($1 \mathrm{C}, \mathrm{s}, \mathrm{Ar}$), 137.70 (1C, s, Ar), 136.11 (1C, s, Ar), 132.26 (1C, d, ArH), 131.13 (1C, d, ArH), 130.58 (1C, s, Ar), 129.10 (1C, d, ArH), 127.89 (1C, d, ArH), 127.73 (1C, d, ArH), 127.10 (1C, d, ArH), 125.99 (1C, d, ArH), 124.88 (1C, d, ArH), 124.35 (1C, d, ArH), 123.93 (1C, d, ArH), 122.88 (1C, d, ArH), 121.56 (1C, d, ArH), 120.66 (2C, d, ArH), 49.84 (1C, s, $\left.\mathrm{Ar}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2}\right), 41.35\left(1 \mathrm{C}, \mathrm{t}, \mathrm{ArCH}_{2} \mathrm{C}\right), 37.19$ (1C, t, $\mathrm{ArCH}_{2} \mathrm{C}$) (one carbon signal overlaps); EI-MS m/ z 467 (M ${ }^{+}, 1$), 252 (100). ${ }^{28}$

7b,8-Dihydro-8a-[(2-bromo-5-methoxyphenyl)methyl]-10-nitrobenz[e]acephenanthrylene (20). A suspension of 9 ($210 \mathrm{mg}, 0.36 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(6 \mathrm{mg}, 7.5 \mathrm{~mol} \%, 0.027$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(397 \mathrm{mg}, 2.88 \mathrm{mmol})$, and $\mathrm{BnMe} \mathrm{NBr}^{2}(41.4 \mathrm{mg}$, $0.18 \mathrm{mmol})$ in DMF (6 mL) was stirred at $70^{\circ} \mathrm{C}$ for 24 h . After the usual workup ($\mathrm{Et}_{2} \mathrm{O}$), the residue was chromatographed (3:1 hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give 20 ($120 \mathrm{mg}, 67 \%$) as a white solid: $\mathrm{mp}\left(\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}\right) 144-146{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200\right.$ $\mathrm{MHz}) \delta 8.30(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{dd}, \mathrm{J}=8.6,2.7 \mathrm{~Hz}$, 1H), 7.93 (d, J $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{dd}, \mathrm{J}=8.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}$, 1 H), 3.63 (AB system, part A, J = $15.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.40(\mathrm{~s}, 3 \mathrm{H})$, 3.32 (AB system, part A, J $=12.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.97 (AB system, part B, J $=15.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.96 (AB system, part $\mathrm{B}, \mathrm{J}=12.9$ $\mathrm{Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 50 \mathrm{MHz}$; DEPT) $\delta 157.37$ (1C, s, Ar), 149.72 ($1 \mathrm{C}, \mathrm{s}, \mathrm{Ar}$), 147.24 (1C, s, Ar), 147.03 (1C, s, Ar), 141.12 (1C, s, Ar), 140.75 (1C, s, Ar), 139.75 (1C, s, Ar), 137.70 (1C, s, Ar), 136.80 (1C, s, Ar), 132.58 (1C, d, ArH), 130.74 (1C, s, Ar), 129.15 (1C, d, ArH), 127.94 (1C, d, ArH), 127.15 (1C, d, ArH), 124.83 (1C, d, ArH), 124.25 (1C, d, ArH), 123.93 (1C, d, ArH), 122.88 ($1 \mathrm{C}, \mathrm{d}, \mathrm{ArH}$), 121.56 (1C, d, ArH), 120.77 (1C, d, ArH), 120.61 ($1 \mathrm{C}, \mathrm{d}, \mathrm{ArH}$), 116.23 (1C, s, Ar), 115.39 (1C, d, ArH), 114.97 ($1 \mathrm{C}, \mathrm{d}, \mathrm{ArH}$), 54.96 ($1 \mathrm{C}, \mathrm{q}, \mathrm{CH}_{3} \mathrm{O}$), 49.90 ($1 \mathrm{C}, \mathrm{s}$, $\left.\mathrm{Ar}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2}\right), 41.62\left(1 \mathrm{C}, \mathrm{t}, \mathrm{ArCH}_{2} \mathrm{C}\right), 37.40\left(1 \mathrm{C}, \mathrm{t}, \mathrm{ArCH}_{2} \mathrm{C}\right)$; $\mathrm{El}-$ MS m/ z 499, 497 ($\mathrm{M}^{+}, 2$), 252 (100). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{20^{-}}$ $\mathrm{BrNO}_{3}: \mathrm{C}, 67.48 ; \mathrm{H}, 4.05 ; \mathrm{N}, 2.81$. Found: C, 67.48; H, 4.24; N, 2.80 .

6-Nitro-1H,16H -phenanthro[1,10,10-aef]acephenanthrylene (22). A suspension of 21 ($400 \mathrm{mg}, 0.73 \mathrm{mmol}$), $\mathrm{K}_{2^{-}}$ $\mathrm{CO}_{3}(805 \mathrm{mg}, 5.8 \mathrm{mmol}), \mathrm{BnMe} \mathrm{NBr}^{2}(84 \mathrm{mg}, 0.37 \mathrm{mmol})$) and $\mathrm{Pd}(\mathrm{OAc})_{2}(8 \mathrm{mg}, 5.5 \mathrm{~mol} \%, 0.04 \mathrm{mmol})$ in DMF (20 mL) was heated at $70^{\circ} \mathrm{C}$ for 32 h . After the usual workup ($\mathrm{E} \mathrm{t}_{2} \mathrm{O}$), the residue was chromatographed ($4: 1$ hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give 22 as a yellow solid ($150 \mathrm{mg}, 53 \%$): $\mathrm{mp}\left(\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}\right) 231-232$ ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.87(\mathrm{dd}, \mathrm{J}=7.6,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.79-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.65$ (dd, J $=7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.63-$ $7.53(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{brt} \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H})$, $7.30(\mathrm{dd}, \mathrm{J}=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{br} \mathrm{d}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, \mathrm{~J}=14.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.40(\mathrm{br} \mathrm{d}, \mathrm{J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{br} \mathrm{d}, \mathrm{J}=14.2 \mathrm{~Hz}$, 1H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz} ; \mathrm{DEPT}\right) \delta 150.95$ (1C, s, Ar), 148.83 ($1 \mathrm{C}, \mathrm{s}, \mathrm{Ar}$), 145.89 (1C, s, Ar), 143.06 (1C, s, Ar), 138.25 ($1 \mathrm{C}, \mathrm{s}, \mathrm{Ar}$), 138.09 ($1 \mathrm{C}, \mathrm{s}, \mathrm{Ar}$), 136.07 (1C, s, Ar), 134.41 (1C, s, Ar), 134.29 (1C, s, Ar), 130.12 (1C, d, ArH), 129.97 (1C, d, ArH), 129.93 (1C, s, Ar), 129.57 (1C, d, ArH), 129.32 (1C, d, ArH), 128.63 ($1 \mathrm{C}, \mathrm{d}, \mathrm{ArH}$), 127.73 (1C, d, ArH), 127.37 (1C, d, ArH), 127.17 (1C, s, Ar), 126.61 (1C, d, ArH), 124.69 (1C, d, ArH), 123.59 ($1 \mathrm{C}, \mathrm{d}, \mathrm{ArH}$), 123.07 (1C, d, ArH), 119.90 (1C, d, ArH), 119.58 ($1 \mathrm{C}, \mathrm{d}, \mathrm{ArH}$), 46.63 ($\left.1 \mathrm{C}, \mathrm{s}, \mathrm{Ar}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2}\right), 34.57$ (1C, $\left.\mathrm{t}, \mathrm{ArCH}_{2} \mathrm{C}\right), 33.91\left(1 \mathrm{C}, \mathrm{t}, \mathrm{ArCH}_{2} \mathrm{C}\right)$; El-MS m/ z $387\left(\mathrm{M}^{+}, 100\right) .{ }^{28}$

7b,8-Dihydro-8a-methyl-6-nitrobenz[e]acephenanthrylene (24) and 7b,8-Dihydro-8a-methyl-1-nitrobenz[e]acephenanthrylene (25). A suspension of 23 (220 mg , $0.56 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(230 \mathrm{mg}, 1.7 \mathrm{mmol}), \mathrm{BnMe} \mathrm{NBr}^{2}(130 \mathrm{mg}$, $0.56 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{OAc})_{2}(13 \mathrm{mg}, 11 \mathrm{~mol} \%, 0.06 \mathrm{mmol})$ in DMF (8 mL) was stirred at $100^{\circ} \mathrm{C}$ for 24 h . After the usual workup ($\mathrm{Et}_{2} \mathrm{O}$), the residue was chromatographed ($3: 1$ hexane$\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to givea 2:1 mixture of $\mathbf{2 4}$ and $\mathbf{2 5}$ ($109 \mathrm{mg}, 62 \%$). After recrystallization $\left(\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}\right)$, $\mathbf{2 4}$ was obtained as a yellow solid: $\mathrm{mp}\left(\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}\right) 178-179{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200\right.$ $\mathrm{MHz}) \delta 8.38(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{dd}, \mathrm{J}=8.5,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.89-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.86(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, \mathrm{J}$

[^5]$=7.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, \mathrm{J}=6.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (dd, J $=7.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.29(\mathrm{~m}, 3 \mathrm{H}), 3.31(\mathrm{AB}$ system, part $A, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{AB}$ system, part $\mathrm{B}, \mathrm{J}=14.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz} ; \mathrm{DEPT}\right) \delta 154.23$ (1C, s, Ar), 150.87 (1C, s, Ar), 147.07 (1C, s, Ar), 146.86 (1C, $\mathrm{s}, \mathrm{Ar}), 136.01$ (2C, s, Ar), 133.03 (1C, s, Ar), 132.09 (1C, s, Ar), 130.20 (1C, d, ArH), 128.95 (1C, d, ArH), 128.57 (1C, d, ArH), 127.54 (1C, d, ArH), 123.63 (1C, d, ArH), 123.55 (1C, d, ArH), 123.12 (1C, d, ArH), 120.92 (1C, d, ArH), 120.31 (1C, d, ArH), 118.63 (1C, d, ArH), $46.15\left(1 \mathrm{C}, \mathrm{s}, \mathrm{Ar}_{2}\left(\mathrm{CH}_{3}\right) \mathrm{CCH}_{2}\right), 38.13$ (1C, $\mathrm{t}, \mathrm{ArCH}_{2} \mathrm{C}$), 23.54 (1C, q, CH_{3}); El-MS m/ z $313\left(\mathrm{M}^{+}, 52\right), 252$ (100). The filtrate from the recrystallization showed a 1:1 mixture of 24 and 25 that could not be separated by chromatography. 25: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$ (only distinctive signals) $\delta 3.19$ (AB system, part $A, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.87 (AB system, part $\mathrm{B}, \mathrm{J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H})$. The EI-MS of the mixture of $\mathbf{2 4}$ and $\mathbf{2 5}$ was identical with that of pure $\mathbf{2 4} .^{28}$

10,10-B is[(2-bromophenyl)methyl]-9(10H)-anthracenone (26). A solution of $9(10 \mathrm{H})$-anthracenone ($1.00 \mathrm{~g}, 5$ mmol) and 1-bromo-2-(bromomethyl) benzene ($3.75 \mathrm{~g}, 15 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was treated with a solution of $\mathrm{BnEt}_{3} \mathrm{NBr}$ (250 mg) in aqueous $\mathrm{NaOH}(30 \%, 15 \mathrm{~mL}$). The mixture was stirred for 2 h . After the usual workup $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, the residue was chromatographed (10:1 hexane-EtOAc) to give 9-[(2-bromophenyl)methoxy]-10-[(2-bromophenyl)methyl]anthracene as a yellow solid ($0.60 \mathrm{~g}, 23 \%$): mp $146-148{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.44-8.38(\mathrm{~m}, 2 \mathrm{H})$, 8.09-8.01 (m, 3 H), 7.68 (dd, J $=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.67 (dd, J $=8.0,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.53-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.30(\mathrm{td}, \mathrm{J}=7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ (td, J $=7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{td}, \mathrm{J}=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.43$ (dd, J $=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 2 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$; DEPT) $\delta 150.55$ (1C, s, Ar), 139.86 (1C, s, Ar), 137.05 (1C, s, Ar), 132.67 (1C, d, ArH), 132.43 (1C, d, ArH), 131.34 (2C, s, Ar), 129.73 (1C, d, ArH), 129.39 (1C, d, ArH), 129.03 (1C, d, ArH), 127.76 (1C, d, ArH), 127.66 (1C, d, ArH), 127.51 (1C, d, ArH), 127.14 (1C, s, Ar), 126.31 (2C, d, ArH), 125.18 (2C, d, ArH), 124.94 (2C, d, ArH), 124.73 (2C, s, Ar), 124.51 (1C, s, Ar), 122.90 (2C, d, ArH), 122.30 (1C, s, Ar), 76.51 (1C, t, $\mathrm{ArCH}_{2} \mathrm{O}$), 34.05 (1C, t, $\mathrm{ArCH}_{2} \mathrm{Ar}$); El-MS m/ z 532, 530 ($\mathrm{M}^{+}, 12,7$), 363 (100), 361 (99). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}$: $\mathrm{C}, 63.18 ; \mathrm{H}, 3.79$. Found: C, 63.13; $\mathrm{H}, 3.79$. Elution with $5: 1$ hexane-EtOAc afforded 26 as a white solid (1.00 g, 38\%): mp $189-190{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.26$ (dd, J $=7.7$, $1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.35(\mathrm{~m}, 8 \mathrm{H}), 6.87(\mathrm{td}, \mathrm{J}=7.7,1.7 \mathrm{~Hz}, 2 \mathrm{H})$, 6.72 (td, J $=7.6,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.07$ (dd, J $=7.8,1.7 \mathrm{~Hz}, 2 \mathrm{H})$, 3.85 (s, 4H); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3,75 \mathrm{MHz}$; DEPT) $\delta 183.21$ (1C, s, CO), 145.27 (2C, s, Ar), 135.40 (2C, s, Ar), 133.37 (2C, d, ArH), 132.62 (2C, s, Ar), 132.56 (2C, d, ArH), 131.21 (2C, d, ArH), 127.87 (2C, d, ArH), 127.66 (2C, d, ArH), 127.35 (2C, d, ArH), 126.70 (2C, d, ArH), 126.49 (2C, d, ArH), 126.33 (2C, s, Ar), $48.10\left(2 \mathrm{C}, \mathrm{t}, \mathrm{ArCH}_{2} \mathrm{C}\right), 47.27$ (1C, s, $\left.\mathrm{Ar}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2}\right)$; El-MS $\mathrm{m} / \mathrm{z} 532,530\left(\mathrm{M}^{+}, 11,6\right), 363$ (100), 361 (100). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}: \mathrm{C}, 63.18 ; \mathrm{H}, 3.79$. F ound: $\mathrm{C}, 63.00 ; \mathrm{H}, 3.89$.

1H,17H-Dinaphtho[1,2,3-de:3,2,1-fg]anthracen-9-one (27). A suspension of 26 ($200 \mathrm{mg}, 0.37 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}$ (10 $\mathrm{mg}, 3 \mathrm{~mol} \%, 0.044 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}$ ($420 \mathrm{mg}, 3.0 \mathrm{mmol}$), and $\mathrm{Bu}_{4} \mathrm{NBr}(400 \mathrm{mg}, 1.24 \mathrm{mmol})$ in DMF (5 mL) was stirred at $140{ }^{\circ} \mathrm{C}$ for 36 h . After the usual workup ($\mathrm{Et} \mathrm{t}_{2} \mathrm{O}$), the residue was chromatographed ($3: 1$ hexane-EtOAc) to give 27 as a white solid ($120 \mathrm{mg}, 88 \%$): $\mathrm{mp}>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 8.38$ (dd, J $=7.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 8.05 (dd, J $=7.8$, $1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{br} \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.41(\mathrm{br} \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{td}, \mathrm{J}=7.5,1.3 \mathrm{~Hz}, 2 \mathrm{H})$, 6.75 (br d, J $=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.95 (AB system, part $\mathrm{A}, \mathrm{J}=15.4$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.67 (AB system, part $\mathrm{B}, \mathrm{J}=15.4 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz} ; \mathrm{DEPT}\right) \delta 183.17$ (1C, s, CO), 143.74 (2C, s, Ar), 135.33 (2C, s, Ar), 134.78 (2C, s, Ar), 134.44 (2C, s, Ar), 129.92 (2C, s, Ar), 129.45 (2C, d, ArH), 129.02 (2C, d, ArH), 128.38 (2C, d, ArH), 127.79 (2C, d, ArH), 127.60 (2C, d, ArH), 126.54 (2C, d, ArH), 123.07 (2C, d, ArH), 37.24 (2C, t, ArCH ${ }_{2} \mathrm{C}$), 35.83 (1C, s, $\left.\mathrm{Ar}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2}\right)$; EI-MS m/ z $370\left(\mathrm{M}^{+}, 100\right) .{ }^{28}$

2-[(2-Bromophenyl)methyl]acenaphthen-1-one (28). A mixture of acenaphthenequinone ($1.0 \mathrm{~g}, 5.5 \mathrm{mmol}$) and (2-
bromobenzyl)triphenylphosphonium bromide ($4.2 \mathrm{~g}, 8.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ was treated with aqueous $\mathrm{LiOH}(5 \mathrm{M}, 10$ mL) at $23^{\circ} \mathrm{C}$ for 2 h . After the usual workup $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, the residue was chromatographed ($4: 1$ hexane-EtOAc) to afford a yellow solid whose ${ }^{1} \mathrm{H}$ NMR spectrum showed several multiplets at $8.25-7.25 \mathrm{ppm}$. This solid was dissolved in EtOAc (100 mL) and stirred under hydrogen (1 atm) in the presence of $\mathrm{Pd} / \mathrm{C} 10 \%(500 \mathrm{mg})$ at $23^{\circ} \mathrm{C}$ for 18 h . The mixture was filtered through Celite, evaporated, and chromatographed ($6: 1$ hexane-EtOAc) to afford $\mathbf{2 8}$ as a white sol id ($1.51 \mathrm{~g}, 82 \%$, overall yield): $\mathrm{mp}\left(\mathrm{Et}_{2} \mathrm{O}\right) 86-88^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$) $\delta 8.09(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.61$ $(\mathrm{m}, 3 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, \mathrm{J}=10.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, \mathrm{J}=13.3$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, \mathrm{J}=14.1,10.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $50 \mathrm{MHz}) \delta 204.25,141.76,138.38,138.26,132.96,131.83$, 131.55, 130.65, 128.34, 128.11, 127.92, 127.15, 124.84, 123.99, 121.57, 121.45, 50.54, 37.45 (one carbon signal overlaps); EIMS m/ z 338, 336 (M+, 2), 257 (100). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{13}$ BrO: C, 67.67; H, 3.89. Found: C, 67.63; H, 3.65.

1-[(1-Bromophenyl)methyl]-2-methoxyacenaphthylene (29). A solution of 28 ($500 \mathrm{mg}, 1.48 \mathrm{mmol}$), trimethyl orthoformate ($1.62 \mathrm{~mL}, 14.8 \mathrm{mmol}$), and p-toluenesulfonic acid monohydrate (3 mg) in $\mathrm{MeOH}(30 \mathrm{~mL})$ was stirred at $65{ }^{\circ} \mathrm{C}$ for 2 h . After being cooled to room temperature, the reaction mixture was made alkaline by addition of aqueous NaOH (50\%), and the solvent was evaporated. After the usual workup ($\mathrm{Et}_{2} \mathrm{O}$), the residue was chromatographed (9:1 hexane$\mathrm{Et}_{2} \mathrm{O}$) to afford 29 as a bright red solid ($410 \mathrm{mg}, 79 \%$): mp $\left(\mathrm{Et}_{2} \mathrm{O}\right) 66-68{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.76(\mathrm{~d}, \mathrm{~J}=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.65-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.23$ (m, 2H), 7.19-7.01 (m, 2H), 4.17 (s, 2H), 4.15 (s, 3H); ${ }^{13}$ C NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.22,139.84,138.32,133.69,132.39$, $130.14,127.83,127.54,127.32,126.98,125.29,124.44,122.02$, 120.89, 117.28, 59.85, 30.29 (three carbon signals overlap); EIMS m/ z 352, 350 (${ }^{+}$, 59), 321, 319 (40), 337, 335 (10), 255 (100). Anal. Cal cd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{BrO}: \mathrm{C}, 68.39 ; \mathrm{H}, 4.30$. Found: C, 68.71; H, 4.13.

4H-Cyclopenta[def]chrysen-4-one (30). A mixture of 29 $(88 \mathrm{mg}, 0.25 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAC})_{2}(67 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(276$ $\mathrm{mg}, 2 \mathrm{mmol}$), and $\mathrm{BnMe} \mathrm{e}_{3} \mathrm{NBr}(174 \mathrm{mg}, 0.75 \mathrm{mmol})$ in DMF (3 mL) was stirred for 4 days at $160^{\circ} \mathrm{C}$. After the usual workup ($\mathrm{Et}_{2} \mathrm{O}$), the residue was chromatographed ($6: 1$ hexane-EtOAc) to afford 30 as a pale yellow solid with ${ }^{1} \mathrm{H}$ NMR and MS data in agreement with those reported ($25 \mathrm{mg}, 39 \%$): $\mathrm{mp}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $180-181{ }^{\circ} \mathrm{C}$ (lit. ${ }^{21,29} \mathrm{mp} 204-205{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200\right.$ $\mathrm{MHz}) \delta 8.49(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.14$ ($\mathrm{s}, 1 \mathrm{H}$), 8.07-7.86 (m, 4H), 7.77-7.56 (m, 3H); ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 192.73, 138.38, 134.34, 134.26, 134.13, 132.56, $132.46,131.70,130.74,129.00,128.74,127.91,126.76,125.03$, 125.02, 123.62, 123.16, 122.30, 121.74; EI-MS m/ z 254 (M+, 100).

Acknowledgment. We are grateful to the DGICYT (Project PB94-0163) for support of this research. J.J.G. and B.G.-L. acknowledge the receipt of a fellowship and a contract, respectively, by the Ministerio de Educación y Ciencia.

Supporting Information Available: Experimental procedures and characterization data for fluorenes 1-8, 21, and 23 and copies of the NMR spectra for 17-19, 22, 24, and 27 (17 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

J O962059N

[^6]
[^0]: ${ }^{\otimes}$ Abstract published in AdvanceACS Abstracts, February 15, 1997.
 (1) Synthesis of heterocycles by palladium-catalyzed arylation: (a) Ames, D. E.; Bull, D. Tetrahedron 1982, 38, 383. (b) Ames, D. E.; Opalko, A. Synthesis 1983, 234. (c) Ames, D. E.; Opalko, A. Tetrahe dron 1984, 40, 1919. (d) Kuroda, T.; Suzuki, F. Tetrahedron Lett. 1991, 32, 6915. (e) Kozikowski, A. P.; Ma, D. Tetrahedron Lett. 1991, 32, 3317.
 (2) Application of the palladium-catalyzed arylation to the synthesis of biaryls: (a) Bringmann, G.; Walter, R.; Weirich, R. Angew. Chem., Int. Ed. Engl. 1990, 29, 977. (b) Stadl bauer, W.; Laschober, R.; Kappe, T. Liebigs Ann. Chem. 1990, 531. (c) Deshpande, P. P.; Martin, O. R. Tetrahedron Lett. 1990, 31, 6313. (d) Hosoya, T.; Takashiro, E.; Matsumoto, T.; Suzuki, K. J. Am. Chem. Soc. 1994, 116, 1004. (e) Bringmann, G.; Keller, P. A.; Rölfing, K. Synlett 1994, 423.
 (3) Synthesis of carbocycles by palladium-catalyzed arylation: (a) Rice, J. E.; Cai, Z.-W.; He, Z.-M.; LaVoie, E. J. J. Org. Chem. 1995, 60, 8101. (b) Rice, J. E.; Cai, Z.-W. J . Org. Chem. 1993, 58, 1415. (c) Rice, J. E.; Cai, Z.-W. Tetrahedron Lett. 1992, 33, 1675.
 (4) For the intermolecular palladium-catalyzed arylation, see: (a) Akita, Y.; Inoue, A.; Y amamoto, K.; Ohta, A.; K urihara, T.; Shimizu, M. Heterocycles 1985, 23, 2327. (b) Aoyagi, Y.; Inoue, A.; Koizumi, I.; Hashimoto, R.; Tokunaga, K.; Gohma, K.; Komatsu, J.; Sekine, K.; Miyafuji, A.; Kunoh, J .; Honma, R.; Akita, Y.; Ohta, A. Heterocycles 1992, 33, 257. (c) Dyker, G. Angew. Chem., Int. Ed. Engl. 1992, 31, 1023. (d) Dyker, G. J. Org. Chem. 1993, 58, 6426. (e) Dyker, G. Chem. Ber. 1994, 127, 739

[^1]: (5) $\mathrm{Pd}(0)$ may coordinate with the added halide to form reactive anionic species: (a) Amatore, C.; Azzabi, M.; J utand, A. J. Am. Chem. Soc. 1991, 113, 1670. (b) Amatore, C.; Azzabi, M.; J utand, A. J. Am. Chem. Soc. 1991, 113, 8375. (c) Amatore, C.; J utand, A.; Suarez, A. J Am. Chem. Soc. 1993, 115, 9531. (d) Amatore, C.; Carré, E.; J utand, A.; M'Barki, M. A.; Meyer, G. Organometallics 1995, 14, 5605. (e) Amatore, C.; Carré, E.; J utand, A.; Tanaka, H.; Ren, Q.; Torii, S. Chem. Eur. J. 1996, 2, 957.
 (6) Farina, V. In Comprehensive Organometallic Chemistry II ; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford, 1995; Vol. 12, Chapter 3.4, pp 228-229.
 (7) (a) An electrophilic pathway has been shown to operate in somewhat related palladation reactions: Canty, A. J. In Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford, 1995; Vol. 9, Chapter 5 and references cited therein. (b) The synthesis of palladacycles by intramolecular palladation of an aryl ring has been demonstrated to proceed by electrophilic substitution: Catellani, M.; Chiusoli, G. P. J . Organomet. Chem. 1992, 425, 151.
 (8) Additionally, products derived from a 1,5-hydrogen abstraction, characteristic of radical intermediates, have also been observed in the reaction of some aryl triflates. ${ }^{3 b}$

[^2]: (12) Benz[e]acephenanthrylenes are an important class of environmental carcinogens. For recent syntheses, see: (a) Cho, B. P.; Zhou, L. Tetrahedron Lett. 1996, 37, 1535. (b) Cho, B. P. Tetrahedron Lett. 1995, 36, 2403. (c) Tanga, M. J .; Bupp, J. E. J. Org. Chem. 1993, 58, 4173. (d) Cho, B. P.; Kim, M.; Harvey, R. G. J. Org. Chem. 1993, 58, 5788. (e) Cho, B. P.; Harvey, R. G. J. Org. Chem. 1987, 52, 5668. (f) Amin, S.; Huie, K.; Hussain, N.; Balanikas, G.; Carmella, S. G.; Hecht, S. J. Org. Chem. 1986, 51, 1206. (g) Amin, S.; Huie, K.; Hussain, N.; Balanikas, G.; Hecht, S. S. J . Org. Chem. 1985, 50, 1948.
 (13) For the formation of reduced products under palladiumcatalyzed conditions, see: Saá, J . M.; Dopico, M.; Martorell, G.; GarcíaRaso, A. J. Org. Chem. 1990, 55, 991 and references cited therein.
 (14) Stille, J. K. In The Chemistry of the Metal-Carbon Bond; Hartley, F. R., Patai, S., Eds.; Wiley: Chichester, 1985; Vol. 2, Chapter 9.

[^3]: (20) Rice, J. E.; Czech, A.; Hussain, N.; LaVoie, E. J. J . Org. Chem. 1988, 53, 1775.
 (21) (a) Lee-Ruff, E.; Kruk, H.; Katz, M. J. Org. Chem. 1984, 49, 553. (b) Harvey, R. G.; Abu-shqara, E.; Yang, C. J. Org. Chem. 1992, 57, 6313.
 (22) Ito, Y.; Hirao, T.; Saegusa, T. J . Org. Chem. 1978, 43, 1011.
 (23) Breslow, R.; Garratt, S.; Kaplan, L.; LaF ollette, D. J. Am. Chem. Soc. 1968, 90, 4051.
 (24) Lisitsyn, V. N.; Lugovskaya, E. K. Zh. Org. Khim. 1974, 10, 92.
 (25) Carson, J. R.; Almond, H. R.; Brannan, M. D.; Carmosin, R. J .; Flaim, S. F.; Gill, A.; Gleason, M. M.; Keely, S. L.; Ludovici, D. W.; Pitis, P. M.; Rebarchak, M. C.; Villani, F. J. J . Med. Chem. 1988, 31, 630.

[^4]: (26) Alternatively, palladium-catalyzed reaction of 9-(2-bromobenzylidene)fluorene afforded 10 in 44% yield.
 (27) Alternatively, palladium-catalyzed reaction of 9-(2-bromo-5methoxybencyliden)fluorene ${ }^{12 f}$ gave 11 in 32% yield.

[^5]: (28) Copies of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are provided as Supporting Information.

[^6]: (29) Recrystallized 30 showed consistently a mp of $180-181^{\circ} \mathrm{C}$, approximately $24^{\circ} \mathrm{C}$ lower than that reported in ref 21 . However, the ${ }^{1} \mathrm{H}$ NMR spectrum matches the reported data within experimental error. ${ }^{21 \mathrm{~b}}$

